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A hierarchical divisive algorithm is proposed for identifying communities in complex networks. To that
effect, the definition of community in the weak sense of Radicchi et al. �Proc. Natl. Acad. Sci. U.S.A. 101,
2658 �2004�� is extended into a criterion for a bipartition to be optimal: one seeks to maximize the minimum
for both classes of the bipartition of the ratio of inner edges to cut edges. A mathematical program is used
within a dichotomous search to do this in an optimal way for each bipartition. This includes an exact solution
of the problem of detecting indivisible communities. The resulting hierarchical divisive algorithm is compared
with exact modularity maximization on both artificial and real world data sets. For two problems of the former
kind optimal solutions are found; for five problems of the latter kind the edge ratio algorithm always appears
to be competitive. Moreover, it provides additional information in several cases, notably through the use of the
dendrogram summarizing the resolution. Finally, both algorithms are compared on reduced versions of the data
sets of Girvan and Newman �Proc. Natl. Acad. Sci. U.S.A. 99, 7821 �2002�� and of Lancichinetti et al. �Phys.
Rev. E 78, 046110 �2008��. Results for these instances appear to be comparable.
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I. INTRODUCTION

Networks, or graphs, are a basic and versatile tool for the
study of complex systems in a variety of settings. This in-
cludes modeling of telecommunication networks, such as the
World Wide Web �1�, transportation networks �2�, such as
rail or road networks or electricity grids, social networks �3�,
such as board structures and situations of cooperation or con-
flict, citation and coauthorship networks �4�, biological net-
works, such as food webs �5�, and many more. Networks are
composed of a set of vertices and a set of edges joining pairs
of vertices. Vertices are associated with the entities of the
system under study �people, companies, towns, natural spe-
cies, etc.�. Edges express that a relation defined on all pairs
of vertices holds or not for each such pair. Often networks
are weighted, i.e., a number is associated to each edge which
expresses the strength of the corresponding relation. Net-
works have long been studied for their mathematical proper-
ties and as a tool for modeling and optimization �6–8�. In the
past decade, extensive studies of complex networks have
been made by the physicists’ community. This led to several
important discoveries, such as the power law distribution of
degrees �9� and the small world property �10�.

A topic of particular interest in the study of complex net-
works is the identification of communities, also called mod-
ules or sometimes clusters. Fortunato �11� recently made an
extensive and thorough survey of that very active research
domain. Speaking informally, a community is a subset of
vertices such that there are more edges within the community
than edges joining it to the outside �or, in other words, be-
longing to the cut separating that community from all oth-
ers�. Communities are akin to clusters which have been stud-

ied for a long time in data analysis and, more recently, in
data mining. However, particular properties of networks lead
to specialized heuristics or algorithms, many of which can
identify communities in very large networks. To perform
such a task, it is necessary to make precise the definition of a
community. Newman and Girvan �12� proposed to compare
the number of edges within a community to the expected
number of edges within that community when they have
been chosen at random with the same distribution of degrees.
This definition was extended by formulating the concept of
modularity for a partition of a network as the sum for all
communities of the difference between the fraction of edges
they contain and the expected fraction of edges under the
configuration model �13,14�. Such a criterion can be used to
evaluate partitions and its maximization leads to an optimal
partition in a precise sense. Moreover, this optimal partition
should itself have an optimal number of communities. A
large number of heuristics were proposed to maximize
modularity. They rely on simulated annealing �15�, extremal
optimization �16�, mean field annealing �17�, genetic search
�18�, dynamical clustering �19�, multilevel partitioning �20�,
contraction dilation �21�, multistep greedy �22�, quantum
mechanics �23�, label propagation �24,25�, and a variety of
other approaches �26–31�.

These heuristics provide, usually in moderate time, near
optimal partitions for the modularity criterion or, possibly,
optimal partitions but without the proof of their optimality.
Brandes et al. �32� proved that modularity maximization is
NP-hard. Recently, Xu et al. �33� proposed a mathematical
programming model to maximize modularity exactly, and,
using the CPLEX software �34�, they were able to find optimal
partitions for data sets with up to 104 vertices. While such a
number of vertices is clearly moderate, problems of these
sizes may be of interest in their own right. Moreover, such
research may pave the way toward more efficient exact
methods. Many data sets have however much more than 100
entities and can only be solved approximately by some heu-
ristic. Clustering heuristics and algorithms can be divided, as
traditional in cluster analysis �35–37�, into partitioning algo-
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rithms which aim at finding the best partition into a given
number of clusters and hierarchical algorithms which lead to
a set of nested partitions, i.e., partitions such that any two
clusters in any of them are either disjoint or included one
into the other. Hierarchical clustering schemes can be further
divided into agglomerative and divisive ones. In agglomera-
tive hierarchical clustering schemes one begins with a parti-
tion into as many clusters as entities, each containing a single
entity, then one iteratively merges the two clusters such that
the objective function increases the most in case of maximi-
zation �or decreases the most in case of minimization�. In
divisive hierarchical clustering schemes one begins with a
single cluster containing all entities, which is then biparti-
tioned in such a way that the objective function increases
most �or decreases most�. While merging at each iteration in
agglomerative algorithms is done in an optimal way, there is
no guarantee that the partition obtained remains optimal after
several iterations �there are a few exceptions as, e.g., the
single linkage algorithm, which maximizes the split of parti-
tions obtained at all levels �38��. In divisive hierarchical
clustering algorithms the bipartitioning problem to be solved
at each iteration is often NP-hard and requires a specific
algorithm or heuristic. Again there is no guarantee that the
partition obtained after several iterations will be optimal.

A very efficient agglomerative hierarchical clustering
scheme was proposed by Clauset et al. in 2004 �39�. It ex-
ploits the fact that merging clusters is only profitable if there
is at least one edge between them. For sparse networks this
gives a heuristic with very low complexity, i.e., O�n ln2 n�,
where n is the number of vertices. This contrasts with stan-
dard agglomerative hierarchical clustering schemes �e.g.,
single average, complete linkage, etc.� which require O�n2�
time �40�. Several divisive algorithms were derived even be-
fore the definition of modularity was proposed �41,42�. They
solve the bipartition problem arising at each iteration by re-
moving edges of the network which appear to be likely to
join different communities. One may then select iteratively
edges with the largest betweenness, i.e., which belong to the
largest number of shortest paths between pairs of vertices of
the network. If removing edges increases the number of con-
necting components, a new partition has been obtained. Al-
ternatively, one can use the clustering coefficient, i.e., the
ratio of the number of triangles including an edge to the
largest possible number of such triangles. Edges with small
clustering coefficient are good candidates for removal. This
approach can be extended by considering small cycles larger
than triangles. A spectral method for divisive clustering with
the modularity criterion was developed by Newman in 2006
�43�. Signs of the components of the first eigenvector of the
so-called modularity matrix give a first approximate biparti-
tioning, which can be improved upon by some further heu-
ristic such as the Kernighan-Lin method �44�.

Clearly, maximizing modularity is the mainstream in
community identification since about five years. However,
several authors have criticized this concept, usually showing
that counterintuitive results can be obtained for artificial con-
structed instances �32,45�. Moreover, it was shown �45� that
using the modularity criterion has some limit of resolution.
This means that in the presence of large communities, small
communities may be undetectable even if they are very

dense. Two such examples will be discussed later. To palliate
this problem several modifications to the modularity function
were proposed �31,46� and heuristics generalized accord-
ingly.

An alternative approach to modularity maximization for
finding communities is based on the satisfaction of reason-
able a priori conditions to have a community. Radicchi et al.
�42� proposed two such conditions defining communities in a
strong and a weak sense. Recall that the degree ki of a vertex
i belonging to V is the number of its neighbors �or adjacent
vertices�. Let S�V be a subset of vertices. Then the degree
ki can be separated into two components ki

in�S� and ki
out�S�,

i.e., the number of neighbors of i inside S and the number of
neighbors of i outside S. A set of vertices S forms a commu-
nity in the strong sense if and only if every one of its vertices
has more neighbors within the community than outside,

ki
in�S� � ki

out�S�, ∀ i � S .

Such a condition is hard to satisfy by a community and even
more so by all communities of a partition. Therefore, it does
not appear to be much used in practice. A set of vertices S
forms a community in the weak sense if and only if the sum
of all degrees within S is larger than the sum of all degrees
joining S to the rest of the network,

�
i�S

ki
in�S� � �

i�S

ki
out�S� .

This is equivalent to the condition that the number of edges
within S is at least half the number of edges in the cut of S.
From now on, we refer to this inequality as the weak condi-
tion. Note that it may be of interest to consider a similar
definition but with a nonstrict inequality. Indeed, mathemati-
cal programming handles more easily nonstrict inequalities
than strict ones. Moreover, as will be shown below, it may
also be of interest to consider alternative optimal solutions
for which the condition is satisfied as an equality. Divisive
hierarchical algorithms work by successive bipartitions. It
appears to be desirable that the weak condition be satisfied
by both communities obtained when a bipartition takes place.
Clearly, this is not always possible. This led Radicchi et al.
�42� to propose such a condition as a local stopping criterion
in a divisive hierarchical clustering algorithm. Wang et al.
�47� called a community S indivisible if there is no biparti-
tion, �S1 ,S2� of S, such that both S1 and S2 satisfy the weak
condition. These authors give a mathematical programming
formulation of the problem of determining whether a com-
munity is divisible or indivisible. Unfortunately, this formu-
lation is a mixed 0-1 quadratic program with a nonconvex
continuous relaxation, and consequently it is very difficult to
solve.

In this paper, we give another, much simpler, program to
detect indivisibility. We then observe that the weak condition
is often satisfied by a very large number of bipartitions. To
choose among them we consider the ratio of the number of
edges within a community to the number of cut edges which
have one end point only within that community; i.e., denot-
ing this ratio by r�S�, we have
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r�S� = �
i�S

ki
in�S���

i�S

ki
out�S� .

When dividing S we consider this ratio for both communities
S1 and S2 and maximize the smallest value; i.e., we address
the problem

max
S1,S2�V

min„r�S1�,r�S2�… ,

where S1�S2=S, S1�S2=�, and S1 ,S2��.
Solving this problem by a sequence of linear programs in

0-1 variables within a dichotomous search yields a divisive
clustering algorithm, with a clear and well defined criterion.
Moreover, it is locally optimal in the sense that each division
is done in an optimal way.

The paper is organized as follows. In Sec. II some nota-
tion is given and conditions for a community to be divisible
are presented. These conditions are used in an algorithm to
maximize the edge ratio of a given community. Moreover, it
is explained how this can be done for the communities ob-
tained after several iterations. Computational results are pre-
sented in Sec. III, first on two artificial data sets and then on
five well-known real world ones and on data sets from
benchmarks. Results are compared to those obtained by
maximizing modularity. Section IV presents conclusions and
a few topics for future research.

II. MAXIMIZING THE EDGE RATIO

A. Indivisible communities

The first problem we address is to find whether a given
network can be divided into two or more communities which
all satisfy the weak condition. Note that if a network can be
partitioned into more than two communities it can also be
partitioned into two communities. Indeed, merging two com-
munities can never decrease the number of inner edges nor
increase the number of cut edges. Let G= �V ,E� denote the
network under study, with vertex set V and edge set E. Then
G is indivisible if and only if there is no bipartition �V1 ,V2�
of V such that each class, V1 and V2, contains at least as
many inner edges as one half the number of cut edges, i.e.,
edges joining vertices from one community to the other. The
factor of one half implies that when both V1 and V2 satisfy
the weak condition, the total number of inner edges is larger
than or equal to the number of cut edges.

Both V1 and V2 must be nonempty and disjoint and their
union must be equal to V. Binary variables xi will be used to
denote to which set V1 or V2 belongs vertex vi for all i�V.
By convention, we assume xi=1 if i belongs to V1 and xi
=0 otherwise. We next introduce two sets of binary variables
tij and sij associated to the edges �i , j� of E. Edge �i , j� will
belong to the community induced by V1 if tij =1 and sij =0
and to the community induced by V2 if tij =sij =0 and will
join vertices belonging to both communities if tij =0 and sij
=1. All these conditions are imposed by the following con-
straints associated with each of the edges:

2tij + sij = xi + xj, ∀ i, j � E . �1�

Indeed, if xi=xj =1, then xi+xj =2, which imposes tij =1 and
sij =0; if xi=1, xj =0 or xi=0, xj =1, their sum is equal to 1,

which imposes tij =0 and sij =1; finally, if xi=xj =0, their sum
is equal to 0, which imposes tij =0 and sij =0.

We next express the weak condition. For the first commu-
nity it amounts to

2 �
i,j�E

tij � �
i,j�E

sij . �2�

To find a similar expression for the second community, we
note that its number of edges is equal to �E�−�i,j�E tij
−�i,j�E sij. We can then write the condition as

2 �
i,j�E

tij + 3 �
i,j�E

sij � 2�E� . �3�

In order for both communities to be nonempty, we need to
add a further condition: at least one edge joins a vertex of
one community to a vertex of the other,

�
i,j�E

sij � 1. �4�

Moreover, all variable must be binary,

xi,tij,sij � �0,1	, ∀ i, j � E . �5�

Observe that this mathematical expression of the weak
condition does not imply any optimization and hence does
not require an objective function. One could easily decide
upon a reasonable one which would be used as a secondary
criterion. For instance, one might wish to minimize the num-
ber of cut edges �which corresponds to min �i,j�E sij�. Com-
putational experiments show however that adding such an
objective function may increase very substantially the reso-
lution time of this mathematical program.

B. Finding two communities with largest edge ratio

The definition of a community in the weak sense given by
Radicchi et al. �42� can often be satisfied by a very large
number of communities, and it may be difficult to choose
among them. This does not matter if one considers only
those communities obtained with divisive hierarchical clus-
tering schemes, such as those of Girvan and Newman �41� or
of Radicchi et al. �42�. Indeed, in such cases, the identifica-
tion of communities is done through exploiting betweenness
of edges or clustering coefficients in order to choose edges to
be removed one at a time until the network becomes discon-
nected. Following the proposal of Wang et al. �47�, the weak
community definition would then only be used as a stopping
criterion. It would answer the indivisibility problem as a yes
or no question.

The situation is different if one wishes to build a divisive
hierarchical clustering scheme using only the weak condition
or a variant thereof. One may then wonder if it is possible to
strengthen this definition by quantifying how much the num-
ber of inner edges is larger than the number of cut edges.
This is easily done by introducing a parameter � in the weak
condition which then becomes equal to

EDGE RATIO AND COMMUNITY STRUCTURE IN NETWORKS PHYSICAL REVIEW E 81, 026105 �2010�

026105-3



�
i�S

ki
in�S� � ��

i�S

ki
out�S� . �6�

So, in case of equality, the coefficient � is equal to the ratio
of twice the number of edges within the community S di-
vided by the number of edges within the cut of that commu-
nity. We call it edge ratio for short. One can then seek the
maximum value of � for which the network will be divisible.
For this value � will be equal to twice the ratio of the num-
ber of edges within S divided by the number of edges within
the cut of S.

Doing this, we obtain a more coherent divisive hierarchi-
cal clustering scheme than we would obtain following the
proposal of Wang et al. �47� discussed above because the
communities found will be selected using only the �ex-
tended� weak condition. Returning to the formulation of this
condition given in Sec. II A, we observe that inequalities �2�
and �3� become

2 �
i,j�E

tij � � �
i,j�E

sij �7�

and

2 �
i,j�E

tij + �2 + �� �
i,j�E

sij � 2�E� . �8�

Then maximizing � subject to these last constraints as well
as constraints �1�, �4�, and �5� gives us a mathematical pro-
gramming formulation for identification of optimal commu-
nities according to the edge ratio criterion. This program has
a linear objective function but, due to �, nonlinear and non-
convex constraints. As in the previous case, all the variables
except � take the values 0 or 1. Moreover, if � is fixed, a
linear program in 0-1 variables is obtained. Despite being NP
hard, such programs may be solved efficiently in practice by
a state-of-the-art software such as CPLEX �34�. This suggests
to solve the optimal bipartition problem with a dichotomous
search on the values of �. An initial value � equal to 1 can
first be chosen. If there is no feasible solution for that value,
the network is indivisible. Otherwise, the value of � may be
doubled and feasibility checked until a value is attained for
which the weak condition cannot be satisfied, i.e., the pro-
gram is no more feasible. This gives an upper bound �̄ and
the previous value of � gives a lower bound �� . Then the
dichotomous search proceeds by considering the mid value
of the interval ��� , �̄�. If the program is feasible for this value
of �, the procedure is iterated on the upper half of the current
interval, if not it is iterated on the lower half. The procedure
stops when the length �̄−�� of the current interval is smaller
than some given tolerance �.

We note that an alternative approach can be based on the
solution of a mixed-integer linear programming problem ob-
tained considering � as a �continuous� variable and lineariz-
ing the products of � and the binary variables in constraints
�7� and �8�. However, this will lead to the introduction of
many more variables and constraints. Also, in order to apply
the linearization one needs a lower and an upper bound on �
explicitly known. Thus, our approach, which dynamically
computes bounds on �, appears to be more convenient.

This basic procedure can be accelerated in several ways.
First, one can use an initial value of � corresponding to a
solution obtained by some heuristic instead of the value �
=1. Second, each time a feasible solution is obtained, one
can check what is the corresponding maximum value for �,
i.e., the minimum of the edge ratios for the two communities
obtained. If this value is larger than the current value of � it
may be taken as the lower bound of the next interval of
values of �. Third, once the best value of � for the current
solution is found, one may test whether the solution obtained
for �+� is feasible or not. If not, the optimal solution �up to
a tolerance �� has been found. Fourth, symmetry of the so-
lution set can be removed by fixing a variable, say x1, at 1
from the outset.

Another possibility is to use an alternating algorithm,
which explores increasing values of � by alternatively find-
ing a feasible solution and the corresponding largest value
for �. More precisely, it begins by considering the known
feasible solution with the largest value of �. Then, it in-
creases � by � and attempts to solve the corresponding 0-1
program. If a feasible solution is found, the value of � for
that solution is computed; i.e., � is set to the minimum of the
edge ratios for both communities found and the procedure is
iterated. If not, an optimal solution �up to a tolerance of ��
has been found.

Computational experiences show that there is no system-
atic dominance of the dichotomous search over the alternat-
ing algorithm or conversely.

C. Divisive algorithm

Once a partition into two communities has been found in
the given network, one may wish to find further bipartitions
of one or both of these or show that they are indivisible. In
doing this, one must take into account not only the edges
within each of these communities but also those of the cut
between them. To this effect, one will introduce weights wi
associated to each vertex and equal to the number of cut
edges between that vertex and those of the other community
�or after several cuts have taken place of all other communi-
ties�. Again, inequalities �2� and �3� are modified and become

2 �
i,j�E

tij � �
 �
i,j�E

sij + �
i�V

wixi� �9�

and

2 �
i,j�E

tij + �2 + �� �
i,j�E

sij + ��
i�V

wi�1 − xi� � 2�E� .

�10�

All tools for building a divisive hierarchical clustering
scheme based on the edge ratio criterion are now available. It
proceeds by first finding the two communities with largest
edge ratio in the given network using the algorithm described
in Secs. II A and II B. Then the corresponding subproblems
are updated by computing the weights of the vertices and
stored together with the corresponding value of �. Itera-
tively, as long as some subproblems remain stored, one of
them is selected �the order does not matter� and the biparti-
tion of it with largest edge ratio is found using the algorithm
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of Sec. II B with formulas �9� and �10� instead of �7� and �8�.
When the best bipartition of the current subproblem has been
found, the procedure is updated. If however it is indivisible,
the subproblem is deleted and another one chosen. The algo-
rithm stops when all remaining subproblems are indivisible.

Results can be represented on a dendrogram, which al-
lows both tracking of the successive bipartitions and repre-
sentation of the corresponding values of the edge ratios. This
gives more information than simply noting successive divi-
sions.

III. RESULTS AND COMPARISON

A. Two artificial examples

We first apply the edge ratio algorithm to two artificial
examples of Fortunato and Barthelemy �45� mentioned in
Sec. I.

The first example consists of a ring of cliques each joined
to both of its neighbors by a single edge. As in �45�, we
consider the case of 30 cliques of five vertices. Maximizing
modularity gives communities consisting each of two succes-
sive cliques joined by an edge instead of communities con-
sisting of single cliques. The edge ratio algorithm does find,
very quickly, communities corresponding to each of the
cliques. The dendrogram summarizing the resolution is given
in Fig. 1. The first bipartition, at �=164, consists of two
communities of 15 successive cliques. Each of these commu-
nities is bipartitioned at �=76 into a community of eight
successive cliques and a community of seven successive
cliques. Bipartitions continue yielding communities corre-
sponding to an equal or almost equal number of cliques. At
�=10 all communities correspond to single cliques and are
shown to be indivisible.

The second example consists of two large cliques joined
by a single edge and two small cliques joined by an edge and
also each joined by an edge to the same large clique. Again
as in �45�, we consider the case where the large cliques have
20 vertices and the small ones 5. Maximizing modularity
gives three communities corresponding to the two large

cliques separately and to the union of the small ones. The
edge ratio algorithm gives four communities which corre-
spond to each of the cliques. The partition obtained with the
edge ratio algorithm is presented in Fig. 2. The dendrogram
summarizing the resolution is given in Fig. 3.

B. Zachary’s karate club

We now turn to data sets corresponding to various real
world applications, often studied for purposes of evaluating
community identification heuristics and algorithms. The first
and probably the best known is Zachary’s karate club data
set. It describes friendship relations between 34 members of
a karate club observed over two years by Zachary �48�. In
that period the club splits into two groups after a dispute
between the club owner and the karate instructor. The edge
ratio algorithm obtains, after three bipartitions, a partition
into four indivisible communities, which is quite close to
those obtained by other researchers �12,32,33,41,49,50�. This
partition is represented in Fig. 4. The corresponding dendro-
gram is depicted in Fig. 5. The first bipartition occurs at

FIG. 1. �Color online� Dendrogram summarizing the resolution
with the edge ratio algorithm for the first artificial data set.
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FIG. 2. �Color online� Partition obtained by the edge ratio algo-
rithm for the second artificial data set.

FIG. 3. �Color online� Dendrogram summarizing the resolution
with the edge ratio algorithm for the second artificial data set.

EDGE RATIO AND COMMUNITY STRUCTURE IN NETWORKS PHYSICAL REVIEW E 81, 026105 �2010�

026105-5



�=6.8 and consists of the two following commu-
nities: C1��1,2,3,4,5,6,7,8,10,11,12,13,14,17,18,20,22	 and
C2��9,15,16,19,21,23,24,25,26,27,28,29,30,31,32,33,34	.
This bipartition corresponds exactly to the split of the karate
club, as observed by Zachary, with the exception of member
10, which is included in the first community instead of the
second one. Note that the vertex corresponding to this mem-
ber is connected to two other vertices which correspond to
member 3 from community 1 and member 34 from commu-
nity 2. So the evidence that it should belong to one or the
other community appears to be limited. It has several times
been misclassified by former proposed methods, e.g.,
�49,50�. If vertex 10 be included in community 2 instead
of community 1, the number of cut edges would remain un-
changed at 10 and the edge ratio would be reduced by
min�2�34 /10,2�34 /10�−min�2�35 /10,2�33 /10�=6.8
−6.6=0.2 only. The next bipartition occurs at the lower level
of �=3 and splits the community C1 into the two following
communities: C3��5,6,7,11,17	 and C4��1,2,3,4,8,10,
12,13,14,18,20,22	.

The small community C3 is connected to one vertex of C4
only and is fairly dense. To the best of our knowledge, it has

been detected by all previous methods �12,32,33,41,49,50�.
The last bipartition, of community C2, arises at the very low
level �=1.5 and yields the two communities: C5
��9,15,16,19,21,23,31,33,34	 and C6=��24,25,26,27,28,29,
30,32	.

Comparing with results of modularity maximization, as
reported for various previous methods and proved optimal by
Xu et al. �33�, we see that four communities are obtained and
are close to those given by the edge ratio algorithm �Fig. 6�.
Indeed, community C3 is the same, community C4 differs
only by vertex 10, and communities C5 and C6 differ by
vertices 27 and 30 being included in C5 instead of C6 and
vertex 10 being outside. The edge ratio for C5 and C6 is
min�2�9 /12,2�16 /16�=1.5. If vertices 27 and 30 be in-
cluded in community C6 instead of C5, the edge ratio for C5
and C6 would become min�2�8 /10,2�13 /18�=1.44, i.e.,
be reduced by 0.06 only.

Comparing briefly with results of betweenness-based di-
visive algorithm of Girvan and Newman �41� as reported in
�33�, we find a smaller degree of agreement. There are five
communities, one of which is the isolated vertex 10 and
other of which is exactly community C3. Another community
is very close to C4 but does not include vertex 3. Vertices 25,
28, and 29 form a small community with vertex 3 and the
remaining vertices form a large community including those
of C5 as well as vertices 22, 24, 26, 27, and 32.

To summarize, the edge ratio algorithm shows that there
is one main bipartition at high level of � which corresponds
�almost� to that one reported by Zachary, then two more
bipartitions at medium and lower levels of � which thus
appear to be less natural.

C. Lusseau’s dolphins

A group of 62 bottlenose dolphins has been studied by
Lusseau �51� for many years in Doubtful Sound, New
Zealand. This led to a network with 62 vertices correspond-
ing to the dolphins and 159 edges joining vertices associated
with pairs of dolphins with frequent communications among
them. This data set is also often studied, with various meth-
ods. An optimal partition into five communities for modular-
ity maximization was obtained by Xu et al. �33� �these
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FIG. 4. �Color online� Partition obtained by the edge ratio algo-
rithm for Zachary’s karate club data set.

FIG. 5. �Color online� Dendrogram summarizing the resolution
with the edge ratio algorithm for Zachary’s karate club data set.
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authors also obtained a rather different heuristic partition
into five communities for the same criterion but using hier-
archical clustering�. The partition into five communities
found by the former algorithm is the following:
C1

m��1,3,11,21,29,31,43,45,48	, C2
m��2,6,7,8,10,14,18,20,

23,26,27,28,32,33,42,49,55,57,58,61	, C3
m��4,9,37,40,

60	, C4
m��5,12,16,19,22,24,25,30,36,46,52,56	, and

C5
m��13,15,17,34,35,38,39,41,44,47,50,51,53,54,59,62	.

Applying the edge ratio algorithm yields an optimal par-
tition into eight communities, which is represented in Fig. 7.
These communities are C1��33,61	, C2��6,7,10,
14,40,49,57,58	, C3��18,23,26,28,32	, C4��2,8,20,
27,42,55	, C5��13,15,17,21,34,37,38,39,41,51,53,59	,
C6��3,35,44,45,47,50,54,62	, C7��5,12,19,22,24,25,
30,36,46,52	, and C8��1,4,9,11,16,29,31,43,48,56,60	. The
partition obtained by the modularity-based algorithm is rep-
resented in Fig. 8. The corresponding dendrogram is given in
Fig. 9.

Lusseau �51� noticed that two groups of dolphins, one
predominantly male and one predominantly female, were
separated during part of the observation period. The first bi-
partition, obtained at the edge ratio level of �=14.6667, cor-

responds exactly to the bipartition described by Lusseau ex-
cept for vertex 40 which is added to the first community
instead of remaining in the second. As in the case of vertex
10 for the karate club example, vertex 40 is joined to two
vertices only, one in each of the communities found. Then
both communities obtained are bipartitioned at the � levels
of 3.44 and 2.40. Furthermore, each of the four resulting
communities is bipartitioned one more time at a level of �
close or equal to 1.

The modularity maximization partition does not separate
the first left-hand side community, while the edge ratio algo-
rithm separates it into four communities, i.e., C1 ,C2 ,C3 ,C4,
which are thus included in the same community C2

m. We
leave the interpretation of these communities to the biolo-
gists. While the four right-hand side communities obtained
by the edge ratio algorithm are sometimes fairly close to
communities obtained with the modularity maximization al-
gorithm they never coincide nor any community of one par-
tition is included into a community of the other. Again, pos-
sible substantive interpretations of these communities are left
to the biologists.

To summarize, the edge ratio algorithm finds one biparti-
tion at high level of � which corresponds �almost� to that of
Lusseau and several further partitions, one of which at �
=3.44 appears to be fairly natural.

D. Knuth on Hugo’s Les Misérables

The next data set that we studied describes the relation-
ships between characters in Hugo’s masterpiece Les Mis-
érables. Knuth �52� patiently noted the names and the inter-
actions of all the 80 characters in this 1486 pages long novel
�53�. A graph was then built with 77 vertices associated to
characters which interact �not including, e.g., King Louis-
Philippe, whose character is illustrated and discussed without
interactions with other characters of the novel� and 257
edges associated with pairs of characters appearing jointly in
at least one of the many and usually short chapters of the
novel. The data are available at �52,54�. This network was
studied by Newman and Girvan �12� with their betweenness-
based divisive hierarchical algorithm, leading to a partition
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FIG. 7. �Color online� Partition obtained by the edge ratio algo-
rithm for Lusseau’s dolphin data set.
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FIG. 9. �Color online� Dendrogram summarizing the resolution
with the edge ratio algorithm for Lusseau’s dolphin data set.
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into 11 communities with a modularity Q=0.54. More re-
cently, Xu et al. �33� obtained with their mathematical pro-
gramming formulation an optimal solution with six commu-
nities and modularity Q=0.56. The communities of the
optimal partition found are the following:
C1

m��1,2,3,4,5,6,7,8,9,10	, C2
m��11,12,14,15,16,29,30,33,

34,35,36,37,38,39,45,46	, C3
m��13,17,18,19,20,21,

22,23,24,31,32	, C4
m��25,26,28,41,42,43,69,70,71,72,76	,

C5
m��27,40,44,50,51,52,53,54,55,56,57,73	, and C6

m��47,
48,49,58,59,60,61,62,63,64,65,66,67,68,74,75,77	.

We reproduced this result using a recent implementation
of the Grötschel-Wakabayashi algorithm for clique partition-
ing �55�. Using the edge ratio algorithm we obtained a par-
tition into ten communities, which is the following:
C1��74,75	, C2��49,56,58,59,60,61,62,63,64,65,66,
67,68,77	, C3��26,40,41,42,43,69,70,71,72,76	, C4��47,
48	, C5��1,2,3,4,5,6,7,8,9,10	, C6��30,35,36,37,38,39	,
C7��17,18,19,20,21,22,23	, C8��29,45,46	, C9��50,51,52,
53,54,55,57	, C10��11,12,13,14,15,16,24,25,27,28,31,32,
33,34,44,73	

The numbering of vertices corresponds to the order of
first appearance of the associated characters in the novel. It is
therefore to be expected that each community will contain
several vertices with successive indices, all the more so if the
communities correspond to subplots rather than involving
characters in the central plot of the novel. One measure of
this regularity is the number of breaks in the list of vertices
of each community, i.e., the number of times that two verti-
ces do not have successive indices, after ranking them in
increasing order. The modularity partition has 17 breaks and
the edge ratio partition has 13 breaks. The ten communities
obtained by the edge ratio algorithm can be divided into
three groups. �i� Communities corresponding to subplots,
usually around some main character, i.e., C5, C6, C7, and C9,
which have zero or one break. For instance, community C5
consists of characters playing a role in the life of Bishop
Myriel �vertex 1�. Note that these characters do not interact
between themselves with the exception of Myriel’s sister and
his servant. Consequently, there are ten inner edges only. As
another example, community C7 corresponds to the four stu-
dents, Tholomyès, Listolier, Fameuil, and Blachevelle, and
their grisettes. This community has maximum density or, in
other words, it is a clique. The heroine Fantine �vertex 24� is
not in this community despite being connected to all of its
members as, due to other interactions, she belongs to the
main plot community. �ii� Community close to the central
plot, which have several breaks, i.e., C2, C3, and C10. For
instance, C10 contains vertices associated with the main hero
redeemed convict Jean Valjean �vertex 12�, his nemesis in-
spector Javert �vertex 28�, as well as Fantine �vertex 24�. �iii�
Small communities of unimportant characters, i.e., C1, C4,
and C8. For instance, community C1 consists of child 1, child
2, to which Hugo did not deem necessary to give names.

The modularity maximizing algorithm finds community
C10 as does the edge ratio algorithm, but all other five com-
munities that it finds have two breaks or more. Community
C3

m adds not only Fantine �vertex 24� to the group of students
and their grisettes but also the old lady Marguerite �vertex
13� and the nuns Perpetue and Simplice �vertices 31 and 32�,
which have very few connections to the other members of
that community.

The dendrogram summarizing the working of the edge
ratio algorithm is given in Fig. 10 and also provides interest-
ing information. First one can note that two groups of com-
munities are separated at the very high � level of 7.16 and
both of these groups present chaining effects, i.e., in all di-
visions one of the communities will not be separated any-
more. Communities C1–C4 on the left-hand side are difficult
to divide; i.e., the values of � go from 1 to 2 only. Commu-
nities C5–C10 separate more easily: first community C5
�bishop Myriel� at level 5.8, then community C6 �affaire
Champmathieu� at level 3.61, then community C7 �students�
at level 1.9, and finally community C8 at level 1.33. The
community C9 �Gillesnormand family� only separates from
C10 �main plot� at level 1.09.

To summarize, it appears that the edge ratio algorithm
recognizes both dense and sparse communities and gives a
quantitative measure of how close or how far they are, i.e.,
how difficult they are to separate. Moreover, it appears to be
more selective in the inclusion of vertices into communities
than modularity maximization, as well as less prone to the
resolution limit. The partitions obtained by the edge ratio
algorithm and by the modularity-based algorithm are repre-
sented in Figs. 11 and 12.

E. Krebs’ political books

The third data set we studied deals with copurchasing of
political books on Amazon.com. Krebs �56� listed 105 titles
which are represented by vertices of a network with 441
edges. On the basis of titles and reviews, Newman �43� clas-
sified these 105 books as liberal �l�, conservative �c�, or neu-
tral �n�. This data set was studied with the modularity maxi-
mization criterion by Newman �43� using his hierarchical
divisive spectral heuristic, by Agarwal and Kempe �50� using
heuristically a mathematical programming model and ran-
domized rounding, as well as by Brandes et al. �32� using an
integer programming formulation and an algorithm close
to those of Grötschel and Wakabayashi �55�. We reproduced
these results with our version of the Grötschel-Waka-
bayashi algorithm. The optimal partition for modularity
maximization contains the following five communities:

FIG. 10. �Color online� Dendrogram summarizing the resolution
with the edge ratio algorithm for Hugo’s Les Misérables data set.
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C1
m��1,2,3,5,6,7,8,19,29,30	 with 6 n and 4 c, C2

m��4,9,
10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,33,
34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,54,55,56,57	
with 39 c, C3

m��31,32,60,61,62,63,64,67,71,72,72,74,
75,76,77,78,79,80,81,82,83,84,85,87,88,89,90,91,92,93,94,
95,96,97,98,99,100,101,102,103	 with 38 l, 1 n, and 1 c,
C4

m��49,50,58	 with 1 n and 2 c, and C5
m��51,52,

53,59,65,66,68,69,70,86,104,105	 with 5 l, 4 n, and 3 c.
These five communities consist of two large ones with no
�for c� or very few �for l� misclassifications, two small com-
munities with both n and c books, and one community with
all three categories. We count misclassifications as follows:
any l in a community with a majority of c’s or n’s or con-
versely counts for 1; any n in a community with a majority
of c’s or a majority of l’s or conversely counts for 1/2 mis-
classification. The total number of misclassifications for the
modularity maximization algorithm is 9.

The optimal partition obtained with the edge ratio
algorithm is the following: C1��67,74,82,85,
87,89,90,94,979,98,101	, C2��62,95,96,102,103	, C3��60,
61,63,64,100	, C4��31,32,71,72,73,75,76,77,78,79,80,81,83,
84,88,91,92,93,99	, C5��68,104,105	, C6��29,52,53,59,65,
66,69,70,86	, C7��9,10,12,14,18,21,23,25,27,278,41,42,43,

44,45,46,47,48,49,50,51,54,55,57,58	, C8��35,36,37,
38,39,40	, C9��4,11,13,15,16,17,19,20,22,24,26,33,34,56	,
and C10��1,2,3,5,6,7,8,30	. Again, the total number of mis-
classifications is 9.

The dendrogram summarizing the resolution with the
edge ratio algorithm is presented in Fig. 13. At a very high
level of �, i.e., 22, there is a division into two groups that
clearly corresponds to liberal and to conservative books. In-
deed, the left-hand side group, which eventually splits into
six communities, contains vertices associated with 43 liberal
books, six neutral and three conservative ones. The right-
hand side group contains vertices associated with 46 conser-
vative books, seven neutral and zero liberal ones. So in these
sample purchasers of mostly conservative books never buy
liberal ones, but occasionally buy a neutral one, while pur-
chasers of mostly liberal books occasionally buy a conserva-
tive or a neutral book. A further division of the left-hand side
group separates at level �=2.95 into a subgroup with com-
munities C1 ,C2 ,C3 which only contain liberal books and an-
other subgroup which contains communities C4 ,C5 ,C6
whose members sometimes buy neutral or conservative
books. Whether it is to strive toward objectivity or to com-
fort prejudices, simultaneous purchasers of liberal and con-
servative books appear to be limited. There are several fur-
ther partitions among homogeneous groups which might
indicate some latent dimensions which cannot be explained
only in terms of the l, n, and c categories. The partitions
obtained by the edge ratio algorithm and by the modularity-
based algorithm are represented in Figs. 14 and 15.

F. Girvan and Newman on American football games

As a final example of a real network, we consider the
network in �41� representing the schedule of games between
American college football teams in the Fall 2000. There are
115 teams, most of which belong to one or another of 11
conferences, with intraconference games more frequent than
others. There are also five independent teams. This network
has been analyzed by Girvan and Newman �41� with their
betweenness-based divisive algorithm and by Radicchi et al.
�42� using another divisive algorithm based on the frequency
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FIG. 11. �Color online� Partition obtained by the edge ratio al-
gorithm for Hugo’s Les Misérables data set.
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FIG. 12. �Color online� Partition obtained by the modularity-
based algorithm for Hugo’s Les Misérables data set.

FIG. 13. �Color online� Dendrogram summarizing the resolution
with the edge ratio algorithm for Krebs’ political books data set.
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of small cycles containing an edge. Newman �49� reported
on the application of his agglomerative hierarchical cluster-
ing heuristic to maximize modularity. The same objective
has been considered by Agarwal and Kempe �50�, which use
mathematical programming to find an initial, not necessary
integer, solution followed by randomized rounding. Newman
obtained a modularity of Q=0.546, but his algorithm found
only six communities, often containing two or more confer-
ences. Agarwal and Kempe obtained a modularity of Q
=0.6046. Using again our implementation of the Grötschel-
Wakabayashi �55� algorithm for clique partitioning led to the
solution, for the first time, of the American college football
team problem with a guarantee of optimality �a comparison
of mathematical programming algorithms for modularity
maximization is currently under way and will be reported in
a future paper�. This computation also showed that the heu-
ristic solution of Agarwal and Kempe was indeed optimal. To
compare results obtained with modularity maximization and
edge ratio criteria for this example, one may consider two
questions: �i� does the heuristic or algorithm find the struc-
ture of the problem, i.e., the number of communities, and �ii�
how many misclassification errors are made. The Agarwal-
Kempe heuristic found ten communities, thus missing one of

the conferences. The edge ratio algorithm found 12 commu-
nities, two of which correspond to the same conference
�Mid-American�, but in one case also to two additional inde-
pendent teams. Modularity maximization misclassifies ten
teams, i.e., attributes them to a community of which they do
not form the majority �the five independent teams not being
counted�. The edge ratio algorithm does better, as it misclas-
sifies six teams only �again not considering independent
teams�. It is worth noting that the six misclassifications made
by the latter algorithm are among the ten made by the former
one. Results of the divisive heuristics of Girvan and New-
man �41� and Radicchi et al. �42� are more difficult to inter-
pret. In both cases the structure was recovered; i.e., 11 com-
munities were found. While it is stated in �42� that “the
observed communities perfectly correspond to the confer-
ences, with the exception of the six members of the indepen-
dent conference, which are misclassified,” there are seven
misclassifications in the case of Radicchi et al. �not counting
the misclassifications of the five independent teams� and four
teams �Nevada Las Vegas, Southern California, Louisiana
Monroe, and Louisiana Lafayette� have inadvertently been
omitted.

The dendrogram summarizing the resolution is given in
Fig. 16 and conferences predominant in each of the commu-
nities are listed below. Observe that the only conference split
among two communities is Mid-American and corresponds
to a level of � equal to 1. So, taking strict inequality in the
weak condition will give 11 communities, each correspond-
ing to a single conference. Otherwise, not surprisingly, par-
titions follow geographic lines, as geographically close
teams play more often together than far away ones. The first
partition at level �=8.88 corresponds to six communities
located on the eastern half of USA and the other to the six
communities located on the western half. Other bipartitions
can be explained in a similar way.

To summarize, the edge ratio algorithm finds the structure
of the data set with few misclassifications and through the
dendrogram explains further the classification by geographi-
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FIG. 14. �Color online� Partition obtained by the edge ratio al-
gorithm for Krebs’ political books data set.
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FIG. 15. �Color online� Partition obtained by the modularity-
based algorithm for Krebs’ political books data set.

FIG. 16. �Color online� Dendrogram summarizing the resolution
with the edge ratio algorithm for the Girvan-Newman football game
data set.
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cal considerations. In this case, modularity maximization
does neither. The partitions obtained by the edge ratio algo-
rithm and by the modularity-based algorithm are represented
in Figs. 17 and 18.

G. Reduced version of benchmark of Girvan and Newman

Two anonymous referees suggested that the algorithm of
this paper should be tested on standard benchmarks, i.e.,
those of Girvan and Newman �GN� �41� and of Lancichinetti
et al. �57�, which are often used in comparison of algorithms,
e.g., �58,59�. These networks were generated using the code
of Fortunato et al. �60�.

The algorithm proposed in this paper is an exact one and
requires a computing time rapidly increasing with the size of
the data sets under study. To illustrate, computing times on
the previous problems analyzed in this section are given in
Table I. Moreover, randomly generated instances tend to be
more time consuming than other ones that exhibit some
structure. Consequently, we have kept the framework of the
GN data set but reduced size. We consider networks with 32

entities, four equal communities of eight entities, vertices
with degree 8, and a ratio of outer edges to inner edges
controlled by a parameter �. Again, modularity is computed
exactly using the algorithm of Grötschel and Wakabayashi
�55� and edge ratio using the proposed algorithm. Results are
presented in Table II. The first four columns give character-
istics of the networks under study. The two next columns
give the number of communities found and the percentage of
correctly classified vertices for the edge ratio algorithm. The
next column gives the mutual information Ier between the
partition found by the edge ratio algorithm and the one a
priori known. It is computed as described in the paper of
Danon et al. �58�. The last columns do the same for the
modularity maximization algorithm. The percentage of cor-
rectly classified vertices is obtained by making a tableau with
as many rows as communities obtained by the algorithm and
as many columns as there are communities in the problem
generated. Then the number of common elements is inserted
in every cell. The number of correctly classified vertices is
taken to be the value of an optimal solution of the corre-
sponding assignment problem �61�. In other words, if p is the
minimum number of rows or columns, then p cells are se-
lected, one at most per line with a maximum sum. It appears

TABLE I. Computing time of edge ratio algorithm on data sets
from literature. Solutions have been obtained on a 2.4 GHz Intel
Xeon CPU of a computer with 8 Gbytes random access memory
shared by three other similar CPU running LINUX.

Data set n m
Time

�s�

Karate 34 78 1.51

Dolphin 62 159 259.91

Les Misérables 77 254 481.25

Political books 105 441 156395.86

Football 115 613 429266.09
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FIG. 17. �Color online� Partition obtained by the edge ratio al-
gorithm for the Girvan-Newman football game data set.

TABLE II. Results obtained with edge ratio algorithm and modularity maximization algorithm on benchmark of Girvan and Newman.

n m � Communities

Edge ratio Modularity maximization

Communities
Correctly classified vertices

�%� Ier Communities
Correctly classified vertices

�%� Im

32 128 0.15 4 4 100 1 4 100 1

32 128 0.2 4 4 100 1 4 100 1

32 128 0.25 4 4 100 1 4 100 1

32 128 0.3 4 4 100 1 4 100 1

32 128 0.35 4 4 100 1 4 100 1

32 128 0.4 4 4 100 1 4 100 1

32 128 0.45 4 4 90.6 0.8 4 100 1

32 128 0.5 4 4 100 1 4 100 1

32 128 0.55 4 2 46.9 0.11 4 56.3 0.48

32 128 0.6 4 2 37.5 0.12 4 53.1 0.28

32 128 0.65 4 2 40.6 0.11 4 43.8 0.18

32 128 0.7 4 3 37.5 0.10 4 43.8 0.12
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that edge ratio and modularity maximization algorithms give
close results when ��0.5, then the edge ratio algorithm
finds too few communities and classifies correctly less verti-
ces than modularity maximization.

H. Version of benchmark of Lancichinetti et al.

Lancichinetti et al. �57� stressed that in many community
identification problems the distribution of degrees, as well as
the distribution of size communities, is not uniform but tends
to follow power laws. Therefore, we considered problems of
similar sizes as those of Sec. III G but with exponents differ-
ent from 1 for these distributions. We consider a value of
degree distribution 	=2 and a value of size community dis-
tribution 
=2. Results are presented in Table III. Again it
appears that results are fairly similar with the slight advan-
tage for the edge ratio algorithm, with an average modularity
of 73.16%, over the modularity maximization algorithm,
with an average modularity of 72.13%. Results of the former
algorithm are better in four cases, results of the latter one in
three cases, and there are five ties. Once again the edge ratio
algorithm finds slightly too few communities, with an aver-
age of 3 instead of 3.25, while the modularity maximization
algorithm finds slightly too many, with an average of 3.42
instead of 3.25.

IV. CONCLUSIONS

Building upon the definition of community in the weak
sense by Radicchi et al. �42�, a criterion for a community in
a network has been proposed, the edge ratio or ratio of twice
the number of inner edges to the number of cut edges of that
community. When bipartitioning a community, it is natural to
consider the edge ratio values for both of the resulting com-
munities. We propose therefore a locally optimal hierarchical
divisive algorithm for identifying communities based on
edge ratio. This algorithm was implemented and applied to

both artificial and well-known real data sets with up to 115
entities.

Comparing the proposed algorithm with modularity maxi-
mization, it appears not to suffer from the resolution limit
problem and usually identifies more communities, often with
more precision. However, much work remains to be done
and questions to be answered.

�i� Divisive hierarchical versus partitioning algorithms.
As in �41,42,62,63�, the algorithm we propose here proceeds
by successive bipartitions of the network and subnetworks
obtained until the indivisibility condition is satisfied for each
of them. Clearly, this algorithm has the advantages and de-
fects of many other divisive algorithms. For instance, on the
one hand, as mentioned by a referee, “cutting a subgraph into
more than two pieces could lead to more relevant but by the
presented method undetectable structures.” This would not
be the case with a partitioning algorithm. On the other hand,
the dendrogram associated with the divisive algorithm can
give interesting information on the relationships between
communities and their cohesion, as illustrated by the karate
club and the football game cases discussed above. In our
view, hierarchical and partitioning algorithms are comple-
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FIG. 18. �Color online� Partition obtained by the modularity-
based algorithm for the Girvan-Newman football game data set.

TABLE III. Results obtained with edge ratio algorithm and modularity maximization algorithm on benchmark of Lancichinetti et al.

n m � Communities

Edge ratio Modularity maximization

Communities
Correctly classified vertices

�%� Ier Communities
Correctly classified vertices

�%� Im

32 139 0.15 3 3 100 1 3 100 1

32 141 0.2 3 3 100 1 3 100 1

32 139 0.25 3 3 96.9 0.9 3 100 1

32 132 0.3 3 3 81.2 0.61 4 81.2 0.87

32 135 0.35 3 3 87.5 0.73 4 71.9 0.58

32 130 0.4 4 4 96.9 0.92 4 96.9 0.92

32 132 0.45 4 3 68.7 0.69 4 93.8 0.86

32 133 0.5 3 3 50 0.29 5 46.9 0.32

32 149 0.55 4 3 53.1 0.44 3 56.2 0.52

32 132 0.6 3 3 53.1 0.16 4 34.3 0.05

32 143 0.65 3 2 50 0.19 3 43.8 0.10

32 115 0.7 3 2 40.6 0.02 4 40.6 0.11
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mentary �in previous work the second author and co-workers
provided an O�n2 ln n� exact algorithm for hierarchical divi-
sive clustering with the diameter criterion �64� as well as a
nonpolynomial exact algorithm for the NP-hard problem of
partitioning with that criterion �65��. If possible, both types
of algorithms should be applied and the information obtained
compared. Developing a partitioning algorithm for the edge
ratio criterion would complement the present work.

�ii� Size of problems solved and heuristics. Clearly, the
proposed exact algorithm is very time consuming and this
limits drastically the size of instances solved. The easiest
way to palliate this defect is to replace some exact step�s� by
one or several specialized heuristics. Here, the problem to be
solved quickly but approximately is finding the bipartition of
the network or subnetwork with maximum edge ratio. There
are numerous ways to build a heuristic for that purpose and
we plan to make a thorough investigation of them in future
work. Indeed, a performing heuristic would help for several
purposes: �a� accelerate the exact resolution by skipping a
series of iterations in the dichotomous search; �b� solve rap-
idly instances of the size used in the benchmarks of GN and
Lancichinetti et al. in order to make a standard comparison
of algorithms; and �c� solve, if possible, fairly large instances
with several thousands of vertices or more.

�iii� Random networks and indivisible communities. As
mentioned by a referee, “in general, the configuration model
is assumed to be a graph without community structure since
there are no node correlations by construction; however, if
the algorithm is able to divide a random graph into two sub-
graphs, both satisfying the weak community definition, this
would be a weakness for the output of the algorithm.” This
remark points to an important and apparently little studied
aspect of empirical analysis and comparison of clustering
algorithms in complex networks. Indeed many clustering al-
gorithms do provide nontrivial partitions regardless of the
presence or absence of structure in at least some data sets.
Finding when this happens, e.g., for which density of edges,
is a theoretically difficult question. Castellano et al. �66� do
provide estimates for a community to satisfy the weak or the
strong conditions of Radicchi et al. �42� in the Erdős-Renyi
model. Doing the same for the configuration model appears
to be difficult. An empirical study of indivisibility of random
networks when maximizing modularity or edge ratio and
possibly other criteria would be easier and might lead to
interesting insights.

�iv� Weights. Designing a weighted version of the edge
ratio algorithm appears to be both straightforward and of
interest.
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